Run Reconstruction and

Interim Escapement Goal Recommendation for

Kenai River Late-Run Chinook Salmon

A Presentation to the Alaska Board of Fisheries
Statewide Finfish Meeting

March 19, 2013
Robert A. Clark
Division of Sport Fish

Objectives of Presentation

> Describe changes in stock assessment
> Describe run reconstruction
> Describe stock-recruitment analysis
> Discuss interim escapement goal recommendation

Changes in Stock Assessment

$>$ Challenges of counting Chinook salmon at RM 9

- Using Target Strength (TS) to determine size
- Accounting for tidal influence
- Accounting for distribution of Chinook
$>$ External review of assessment identified remedies

Changes in Stock Assessment

$>$ Remedies for challenges at RM 9

- Stop using Target Strength to determine size
- Start using imaging sonar (DIDSON) to determine size
- Develop and use independent indices of Chinook counts
- Move upstream out of tidal influence
- Ensonify entire width of river

Changes in Stock Assessment

> Remedies for challenges at RM 9 through 2012

- Stop using Target Strength to determine size
- Start using imaging sonar (DIDSON) to determine size
- Develop and use independent indices of Chinook counts
- Move upstream out of tidal influence
- Ensonify entire width of river

Changes in Stock Assessment

$>$ What do we do with our old TS-based assessments?

- Cannot simply convert TS-based to DIDSON-based counts

Target Strength
($R^{2}=0.25$)

DIDSON length

Fish length in mm

Changes in Stock Assessment

$>$ What do we do with our old TS-based assessments?

- Also need to account for area not ensonified at RM 9

Run Reconstruction

> Total Run $=$ Harvest Below Sonar + Inriver Run

- Harvest Below Sonar = Catches from Sport, Commercial, Educational, and Personal Use
- Inriver Run $=$ DIDSON Sonar Count \times correction for area not ensonified
> Escapement = Inriver Run - Harvest Above Sonar
- Harvest Above Sonar = Sport and Federal Subsistence
$>$ Reconstruct Run from 1986-2012

Run Reconstruction

$>$ Commercial Catch

- Genetic tissue sampling of Eastside Setnet fishery (2010-11)
- Proportion late-run Kenai fish in catch was:
- 0.647 in 2010
- 0.727 in 2011
- Average of 0.687 applied to 1986-2009 and 2012 catches

Run Reconstruction

$>$ DIDSON Sonar Count

- Use indices of run strength at sonar site to estimate DIDSON equivalents
- Inriver Netting CPUE and sonar-based indices (2002-2012)
- DIDSON estimates (2010-2012)
$>$ Correction for area not ensonified
- Use indices and independent estimates of Inriver Run and Total Run to estimate correction
- Sport and Eastside Setnet CPUEs (1986-2011)
- Telemetry-based survival estimation (1996 and 1997)
, Genetic-based mark-recapture (2007-2011)

Run Reconstruction

> State-space model results for Inriver Run:

Run Reconstruction

> State-space model results for Total Run:

Stock-Recruitment Analysis

> Uses Reconstructed Total Run and Escapements
> Age Composition of Total Run to calculate Return
> Analysis Integrated into Run Reconstruction

- All uncertainties of run reconstruction and age composition estimation flow into stock-recruit analysis
> State-Space Ricker Stock-Recruitment model
- Incorporates uncertainty of inputs into model
- Reduces bias due to time series effects and non-independence

Stock-Recruitment Analysis

> Estimated Escapements

Stock-Recruitment Analysis

> Estimated Returns

Stock-Recruitment Analysis

> Estimated Returns plotted against estimated Escapements

Stock-Recruitment Analysis

> Comparison with Kenai Sockeye

Stock-Recruitment Analysis

> Estimated Stock-Recruitment model

Stock-Recruitment Analysis

> Estimated Management Parameters

- $\mathrm{S}_{\mathrm{MSY}}=20,260$
- $\mathrm{S}_{\mathrm{MAX}}=32,120$
- $\mathrm{S}_{\mathrm{EQ}}=53,200$

Interim Escapement Goal

> Sustainable - encompasses best estimate of $\mathrm{S}_{\mathrm{MSY}}$
> Credible - robust to uncertainties
> Implementable - can be evaluated inseason
> Transferrable - can be easily implemented at new site

Interim Escapement Goal

$>$ Recommended SEG of 15,000 - 30,000 fish

Interim Escapement Goal

> Expected Yields from Recommended Goal Range

Escapement S (1000s)

Interim Escapement Goal

> High probability of achieving MSY

Interim Escapement Goal

> Can be implemented in 2013 at current site

Acknowledgements

Researchers:
Steve Fleischman - DSF Fisheries Scientist I
Jack Erickson - DSF Research Fishery Biologist IV
Lowell Fair - DCF Research F\&G Coordinator
Tim McKinley - DSF Research Fishery Biologist III
Mark Willette - DCF Research Fishery Biologist III

Managers:
Robert Begich - DSF Management Fishery Biologist III Jason Pawluk - DSF Management Fishery Biologist II
Pat Shields - DCF Management Fishery Biologist III

Early-Run Interim Escapement Goal

> Run reconstruction similar to late run analysis
> Stock-recruitment analysis similar to late-run
$>\mathrm{S}_{\mathrm{MSY}}=4,434 ; \mathrm{S}_{\mathrm{MAX}}=6,362 ; \mathrm{S}_{\mathrm{EQ}}=12,270$
> Recommended Interim SEG: 3,800 - 8,500
> Final report available online

Questions?

