Finding the best subset of SNPs for distinguishing populations of Yukon River Chinook salmon

William D. Templin and Anton B. Antonovich

Division of Commercial Fisheries, Alaska Department of Fish and Game, Anchorage, Alaska, USA

Introduction

Recent advances in laboratory methods have increased the number of genetic markers available for identifying stock components in mixtures. Atthough the cost and laboratory time to analyze each marker
has decreased. overall costs have increased due to running ever larger numbers of markers. Prior to tas decreased, overall costs have increased due to running ever larger numbers of markers. Prior to
the availability of a large number of markers most researchers analyzed all available markers to maximize precision. Increasingly, selecting the most informarativeres markers for specific applications will be plored three methods of choosing an optimal set of single nucleotide polymorphism (SNP) Ioci from the 24 SNPs available in Yukon River Chinook salmon populations. By ranking each locus using 1) mean interpopulation allelic freauency difierences (delta), 2) mean interpopulation Fst, and 3) summed loadhgs for each locus from Principal Components alysis (PCA), we developed sels of informative loci that were incrementally tested for precision and accuracy in simulated mixed stock analysis.

Methods

Ranking Markers -
delta - The delta statistic measures the genetic distance between population pairs as the sum of the absolute differences between allele frequencies. Markers were ranked by the mean of the interpopulaion delta values calculuted for that marker.
$\delta_{A B}=\frac{1}{2} \sum_{i=p_{i}^{t}} p_{i}^{1}-p_{i}^{s}$
Fst - The Fst statistic is a measure of genetic diversity based on partitioning the variance of allele Fst The Fst statistic is a measure of genetic diversity based on partitioning the variance of atiele
frequencies within and among populations in a weighted" ANOVA. Markers were ranked by the mean of the interpopulation Fst values calculated for that marker.
PCA (Principal Components Analysis) - PCA is used as a data reduction method that seeks to explain the variation in data (allele frequencies) with fewer parameters. We adapt this method to prowithin the data set. A brief description of the method follows:
Part1: Find Pincicial Com-
ponents that account for ponents that aco
880% of variation.

Part 2: Determine eac
marker contribution to each Principal Component and rank by average.

Testing Marker Sets -
Sets of loci identified by the above methods were tested for usefulness for estimating relative contributions to mixed stock fisheries in the Yukon River. Using simulations in which the relative contribution of population (1000 iterations), we measured the accuracy and precision of population composition estimates based on the reduced sets of markers. The performance of the selected sets of markers were compared with the perfomance of sets of randomly selected markers.

Yukon River drainage and Chinook salmon populations

Population Structure
Using the delta distances calculated between populations and plotting these distances in three dimensions (multidimensional scaling analysis) we can display relationships among
populations. The dots and numbers match the poulations on the map and in the legend. populations. The dots and numbers match the populations on the map and in the legend.
Populations can be segregated into groups based on genetic and geographic factors. Populations can be segregated into groups based on genetic and geographic factor

Results: Locus Ranks				
The three different methods of ranking the SNP markers did not sort the markers identically, but in general the "best" markers appeared near the top in each ranking. Twelve markers are common to all sets of the top fifteen ranked markers.	$\xrightarrow[\text { LNP }]{\text { Locus }}$	delta	Ranks	PCA
	Ots_GH2	1	1	PCA
	Ots_IGF-1.1-76	2		1
	Ots-GPDH-338	${ }_{4}^{3}$	4	4
	Ots_E2-275	5	5	8
	Ots_Tnsf	6	3	7
	Ots_SCIIF2R2-135	7	${ }^{6}$	10
		${ }_{9}^{8}$	11	18
	Ots_MHC1	10	12	13
	Ots u6-75	11	15	12
Spearman's rank correlation test indicated that the delta and the Fst ranks were more similar to each other ($\mathrm{r}=0.94$; $90 \% \mathrm{Cl}[0.53-1.00]$) than either was to the PCA ranking (r=0.87; 90\% Cl [0.46-1.00] and $\mathrm{r}=0.77$; $90 \% \mathrm{Cl}$ [0.361.00], repectively).	Ots_-FGF6B	12	14	17
	${ }^{\text {Ots }}$ Ots Zp3b-215	12 14	10	14
	Ots_-SL	15	16	11
	Ots-P450	16	20	22
	${ }^{\text {Ots }}$ - $4202-161$	17	13	2
		18	18	20
	$\mathrm{O}^{\text {its-iss2 }}$	19	19	15
	Ots_LWSop-638	21	22	21
	Ots-44-92	22	21	19
	Ots_ins-11	23	23	23
	Ots_4211-85	24	24	24

Results: Stock Identification
The ranked sets of SNP markers show a rapid increase in mean population identificaonstrate only small improvement (Top Graph). Perfe addition of more markers demassigned to the
contributing group contributing group. All sets of "best" markers outperormed the randomly
chosen sets. The coefficient of varia-
tion of the mean tion of the mean estimate dropped
very rapidly from one to six marker sets (Bottom Graph). All three sets of ranked markers performed
similarly and each similarly and each
was more accurate than randomly chosen sets ofmarkers.
The variation in the The variation in the
estimates with sets ers was the same as with random sets, but precision improved more rapidly
for chosen sets than or chosen sets than
for random sets as more markers were added.

Conclusions
The three methods of ranking the SNP markers by information content provided similar ranks.
The ranked sets of SNP markers performed more accurately and with better precision than The ranked sets of SNP markers performed more accurately and with better precision than randomly chosen sets of markers for mixed stock analysis.
Only a relatively small set of SNP markers (24) was available. This process may show greater differences between the ranking methods and improved mixed stock analysis
performance when more SNP markers are available for analysis.

Acknowledgements

Funding for this study was provided by the Yukon River Salmon Research and Management Fund and the State of Alaska. Assistance in this analysis was provided by L. Seeb, C. Smith, N. DeCovich, A. Barclay, and
Z. Grauvogel

