THE LITTLENECK CLAM FARMING PROJECT

Raymond RaLonde Marine Advisory Program Alaska Sea Grant Program University of Alaska Fairbanks

and

Vincent Politano Mariculture Program Alaska Department of Fish and Game

LITTLENECK CLAM Protothaca staminea

- Habitat
 - Sandy/gravel/organic composition
 - Pocket beaches
 - Tidal height +3.0 to -1.7 (+1.5 to -1.5)
 - Depth of substrate to 6"
- Water current preference
 - Faster moving water 30-40 inches/sec
- Age and growth
 - Appear to reach harvest size by 4th or 5th year
 - Reading circuli on the shell often over estimates age
 - Reach reproductive size at 1.5"
- Recruitment irregular

Harvest sizes Farmed size 1.25 in (35+ mm) Commercial size (38+ mm)

COMMERICAL AND AQUACULTURE

HARVEST

Kachemak Bay

- General increasing harvests
- Catch per effort shows a decline
- Clam farming banned in 2001
- Concern about population decline
- Southeastern Alaska
 - Aquaculture increases after 1996 and significant declines as 2004
 - Primarily due to natural recruitment
 - Commercial harvest stopped in 1997

LITTLENECK CLAM COMMERCIAL FISHERY HARVEST						
IN KACHEMAK BAY 1986 to 1995						
Year	Harvest	Landings	Harvest/ landing			
1986	17,303	18	961			
1987	12,214	69	177			
1988	14,449	32	452			
1989	2,584	41	63			
1990	35,744	62	577			
1991	47,486	78	609			
1992	54,631	117	467			
1993	63,676	159	544			
1994	44,291	104	426			
1995	66,723	93	717			
Dr. Ch. Duss (Kr.M.)	and the state of the					

Note: No commercial fishery harvest since 2009

SOUTHCENTRAL STUDIES (Brooks 1995-2000)

- Tatitlek, Prince William Sound environmental is similar to S.E. Alaska
- Lesson learned about substrate stability
- Region of very poor recruitment and survival, density average 13.5 clams/ft²
 - Only 7% survival to market
 - Extremely high predation
- Optimum stocking density (4 mm seed) at 100 seed/ft²
- Growth to market size 4- 5 years

Final Report Chugach Regional Resources Commission Bivalve Enhancement Program Bivalve inventories and native littleneck clam (*Protothaca staminea*) culture studies *Exxon Valdez* Oil Spill Trustee Council Project Number 95131

Brooks 2000

SOUTHEAST ALASKA

STUDIES (RaLonde 1999–2008)

- Repeated (Brooks 2000)
 - Recruitment was variable
 - Density of clams at 69 clams/ft²
 - Growth similar
- Additional studies
 - Recruitment distribution
 - Optimum stocking density

Littleneck Clam Farm Development in Alaska Alaska Science and Technology Foundation

Final Report

Raymond RaLonde Alaska Sea Grant Marine Advisory Program

June 8, 2008

ADDITIONAL SOUTHEAST STUDIES

Recruitment distribution and contribution

Upper plot									
Plot number	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	91.38	60.00	57.89	92.59	60.71	17.50	30.19	33.33	23.33
Lower plot									
Plot number	1-A	1-B	1-C	-2-A	2-B	2-C	3-A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	93.75	76.92	68.42	79.55	81.82	66.67	57.69	33.33	53.13

Determination of optimum seed stocking density

	Recruitment								
	Low	Moderate	Heavy						
30	S+ G+ \$L	S+ G+ \$L	S+ G+ \$M						
60	S+ G+ \$M	S+ G+ \$M	S+ G+ \$H						
90	S+ G+ \$M	S+ G+ \$H	S- G+ \$L						

S = Survival G = Growth \$ = Income Optimum yield Red Low Blue Medium Green High

LITTLENECK CLAM FARMING PRELIMINARY STUDY 2010

Joint effort between

- Alaska Department of Fish and Game Mariculture Division
- Alaska Sea Grant Marine Advisory Program
- Starr Fisheries LLC shellfish farm Eric Wyatt
- Volunteers Naukati Nursery, Eric Wyatt, John Sandi

Additional questions

- 1. What is the harvestable clam density after 4 years when stocking at 60 clams/ft²?
- 2. What is the effect of predator exclusion netting on clam survival?
- 3. When can predator exclusion netting be removed?
- 4. Validate growth with other studies.

A LITTLENECK CLAM FARM PRODUCTION PLAN

- Determine clam distribution on the beach.
- Inventory the population for density
- Measure clams and develop a length frequency distribution.
- Interpret the length frequency for clam size distribution and abundance
- Calculate seed stocking plan based on existing density
- Prepare the farm plot
 - Leveling the substrate, deploy predator exclusion, seeding
- Develop a post planting management plan
 - Net maintenance, reseeding?, fouling control, monitoring growth/survival, and harvest

THE FARMING PROCESS

Site selection

Nursery grown seed

Clam inventory

Count and measure

Results

Plot preparation

Completed prep

Seeding @ 46/ft²

METHODOLOGY - redux

- •3 Sites in Tokeen Bay
- 2009 Sampling
- Treatments applied at each site

Plot 1 - Seed and netPlot 2 - Net onlyPlot 3 - Control

•Sampled again in 2010, 2011, and 2013

Clam density and length

Treatment, Time

ANALYSES

Determine whether....

Predator exclusion netting

- 1) Maintain clam population
- 2) Promote growth clam

How long must the netting be installed?

CONCLUSIONS

To optimize littleneck clam production

- Seed and predator netting
- Netting in place for at least 2 years

Growth to market size 4 years in SE Alaska

Full report available soon!

