## Studies to understand Chinook salmon

## distribution in the pollock fishery:

Evaluating impacts and developing measures to reduce bycatch ADFG Chinook Salmon Workshop

Anchorage.
October 2012
James Ianelli
Alaska Fishery Science Center

Diana Stram
North Pacific Fishery Management Council

## Salmon bycatch in groundfish fisheries




## Bering Sea Pollock fishery

Sectors in pollock fishery:

1) Catcher processors
2) Motherships
3) Shore-based catcher vessels
4) Community development quotas

Winter season:
Summer season:
Mid June -early mid October



## Salmon bycatch trends




## Chinook salmon

## Chinook salmon bycatch impacts

Data and analysis:
Combine genetics with age estimates of bycatch to determine impact on returns

## Chinook salmon in pollock fishery

## Salmon bycatch comprises

 juveniles and adultsSome fraction would have returned to spawn in that year

## Chinook salmon bycatch patterns

 By year and season/region





Chinook


bycatch




## Chinook Adult Equivalency analysis (AEQ)



# Annual (and season) AEQ applied to genetic data 

Coastal Western Alaska stocks


## AEQ results impact rate



## Chinook salmon bycatch patterns

 By year and season/region

## Predicting impacts from past studies

$$
\begin{array}{ll}
y_{t}= & \beta_{0}+\beta_{1} T_{t-1}+\beta_{2} T_{t-2}+ \\
& \beta_{3} A_{t}+\beta_{4} B_{t-1}^{S E}+\beta_{5} B_{t-1}^{N W} \cdots
\end{array}
$$

## Predicting impacts from past studies

 Current year plus last year-season and spatially split 2011 impact ranged 5.4 to 11.5 thousand Chinook

## Predicting impacts from past studies Upper Yukon Chinook salmon



## Predicting impacts from past studies Middle Yukon Chinook salmon



## Factors affecting bycatch?

Fishing practices

- Tow duration
- Day/night towing
- Gear modifications

Increased Chinook on fishing grounds due to:

- Environmental conditions
- NPRB temperature-bycatch study

Run sizes?

## Tow duration



## Day/night differences




Modeling Chinook bycatch
rates
(NMFS
data)

## Bycatch AEQ versus run size



## Management actions...

## Chinook salmon bycatch action: 91 ${ }^{\text {st }}$ amendment to Fishery Management Plan

- Overall annual cap of 60,000 Chinook -Performance limit of 47,591
- Vessel Incentive Program
- $100 \%$ observer coverage on pollock fleet
- Complete census of salmon
- Increased genetic sampling
- Both BSAI and GOA
- Annual reports to Council


## Chinook bycatch in Gulf of Alaska

- 25,000 Chinook salmon limit for the GOA pollock trawl fishery
- Implemented by NMFS in 2012


## Chinook Bycatch in GOA Fisheries



## Chum bycatch management

Council considering Chum
-Caps
-Area closures

-Modification of current fleet rolling hot spot program

Complications
Timing differences of Chinook and chum bycatch Council prioritizes Chinook over chum

## Proportions at length



$\mathrm{n}=$ number of

chum measured by NMFS observers on pollock boats

## Length of chum by month

Bigger chum earlier in


## Chum salmon analytical innovation Applying genetics results to AEQ

Need to bridge lag effect of juvenile chum salmon to region of origin

## Example:

If 100 fish were projected from last year's bycatch to return this year...

- Then last year's genetic estimates of the bycatch would apply (not this year's)



## Chum analytical results

- Protection in June and July better for WAK chum...
- Asian hatchery chum relatively higher in August

Coastal West Alaska, 2004-2011


## Chinook saved under chum measures



## Research questions for Chinook bycatch

- More can be done with historical observer data

Oceanographic conditions
Diet and overlap studies

- Shift in priorities

More genetics samples resulting in
Loss of many length and biological samples

- Other studies

Update of AEQ analysis including lag effect of genetics Spatial analysis of genetics and consistency over time

Thanks!

